A Population Spatialization Model at the Building Scale Using Random Forest
نویسندگان
چکیده
Population spatialization reveals the distribution and quantity of population in geographic space with gridded maps. Fine-scale is essential for urbanization disaster prevention. Previous approaches have used remotely sensed imagery to disaggregate census data, but this approach has limitations. For example, large-scale censuses cannot be conducted underdeveloped countries or regions, remote sensing data lack semantic information indicating different human activities occurring a precise location. Geospatial big machine learning provide new fine-scale mapping methods. In paper, 30 features are extracted using easily accessible multisource data. Then, building-scale estimation model trained by random forest (RF) regression algorithm. The results show that 91% buildings Lin’an District absolute error values less than six compared actual comparison multiple linear (ML) model, mean errors RF ML models 2.52 3.21, respectively, root squared 8.2 9.8, R2 0.44 0.18. performs better at Future work will improve accuracy densely populated areas.
منابع مشابه
Diagnosis of Diabetes Using a Random Forest Algorithm
Background: Diabetes is the fourth leading cause of death in the world. And because so many people around the world have the disease, or are at risk for it, diabetes can be called the disease of the century. Diabetes has devastating effects on the health of people in the community and if diagnosed late, it can cause irreparable damage to vision, kidneys, heart, arteries and so on. Therefore, it...
متن کاملSurvival of Dialysis Patients Using Random Survival Forest Model in Low-Dimensional Data with Few-Events
Background:Dialysis is a process for eliminating extra uremic fluids of patients with chronic renal failure. The present study aimed to determine the variables that influence the survival of dialysis patients using random survival forest model (RSFM) in low-dimensional data with low events per variable (EPV). Methods:In this historical cohort study, infor...
متن کاملthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولIdentification of Factors Affecting Metastatic Gastric Cancer Patients’ Survival Using the Random Survival Forest and Comparison with Cox Regression Model
Background and Objectives: In survival analysis, using the Cox model to determine the effective factors requires the assumptions whose failure of leads to biased results. The aim of this paper was to determine the factors affecting the survival of metastatic gastric cancer patients using the non-parametric method of Randomized Survival Forest (RSF) model and to compare its result with the Cox m...
متن کاملAuthor gender identification from text using Bayesian Random Forest
Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2022
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs14081811